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Generation and use of coherent X-ray beams
at future SKIF storage ring

● Why do we need coherent X-ray beams:
lensless 3D-imaging of nanostructures

● How many coherent photons do we need:
optimization of coherent flux at 4th generation storage rings

● Coherent imaging at future SKIF storage ring
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Why do we need coherent X-ray beams?
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Is nm-resolution X-ray microscopy possible:
Abbe diffraction limit

Δ=0.61 λ
N . A .

=0.61 λ
n sinθ

From ZEISS

Resolution in microscopy is limited by
wavelength

AND
lens numerical aperture (nsinθ)

VIS: λ ~ 500 nm, N.A. ~ 1 (Δ ~ 250 nm)
X-RAY: λ ~ 0.1 nm, N.A. ~ 0.001 (Δ ~ 50 nm)
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Fortunately, we have EM.
Unfortunately:

● Cellular structures (incl. in vivo)

● 3D nanostructures in integrated circuits

● 3D nanostructures in aerospace alloys

● 3D nanostructures in energy storage devices

● Non-destructive? Algae cell – Deng et al. 2017

Aerospace alloy – Barriobero-Vila et al. 2017Intel chip – Holler et al. 2017
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Do we really need a bad lens:
lensless CXDI beyond Abbe limit

From Willmott 2019

I(x,y)

Î(x',y') = FT of I(x,y)
I(x,y) = FT of Î(x',y')
(reverse FT by lens)

Lens «reading» both
amplitudes AND phases (!)

Detector reading
ONLY amplitudes

I(x,y)

Î(x',y') = FT of I(x,y) I(x,y) = FT of Î(x',y')
(reverse FT by PC

AFTER phase retrieval)

● DOES NOT require coherent illumination
● Resolution limited by lens N.A.

● DOES require coherent illumination
● Resolution limited by detector size
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Towards coherent illumination:
evaluating X-ray beam coherence

PETRA IV, 12 keV:
CMD into HG + LG modes

Khubbutdinov et al. 2019

Diffraction-limited Gaussian beam (TEM
00

 mode)

σ⋅σ '= λ
4 π

=εcoh

Gaussian Schell-model beam (partially coherent)

Σ⋅Σ '=
1
f coh

⋅εcoh
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How many coherent photons do we need?
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High-energy CXDI at 3rd generation storage rings

Deng et al. 2017
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Coherent flux at ~20 keV
(ESRF ID16A before upgrade):

~1010 ph/s/1%: ~102 s)

1 nm resolution: ~106 s (11 days)

Hynix DRAM – Deng et al. 2017
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How many coherent photons do we need?
At least two orders of magnitude more!
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Maximizing coherent fraction of photon flux:

where ε
e
 corresponds to electron beam emittance,

and β is waist size over divergence ratio:
● β

e
 given by magnetic lattice for electron beam

● β
p
 = L / π for single electron undulator emission at resonance

Due to non-Gaussian character of undulator emission, projected r.m.s. values of source size
and divergence are limited by εcoh ≈ λ / 2π rather than λ / 4π

f coh=
εcoh

ΣxΣ ' x
⋅

εcoh
Σ yΣ ' y

=
εcoh

2

√εe , xβe , x+εcohβp√
εe , x
βe , x

+
εcoh
βp

√εe , yβe , y+εcohβp√
εe , y
βe , y

+
εcoh
βp

,
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Coherent fraction at 4th generation storage ring

EBS:
ε = 110 / 5 pm·rad

β = 6.9 / 2.6 m
L = 3.2 m

SKIF HB:
ε = 69 / 7 pm·rad
β = 15.7 / 2.3 m

L = 2.3 m

ESRF:
ε = 4000 / 5 pm·rad

β = 37.6 / 3.0 m
L = 3.2 m
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Maximizing coherent fraction of photon flux:

f coh=
εcoh

ΣxΣ ' x
⋅

εcoh
Σ yΣ ' y

=
εcoh

2

√εe , xβe , x+εcohβp√
εe , x
βe , x

+
εcoh
βp

√εe , yβe , y+εcohβp√
εe , y
βe , y

+
εcoh
βp

,

(1)min εe , x⋅εe , y=εe , x
2

⋅κ

 (minimization of electron beam emittance)

(2)βe=βp=L/ π
(matching of electron and photon phase space ellipses)
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Matching of phase space ellipses

photon:
β

p
 ≈ 0.7

x

x'

x

x'

electron:
β

x
 ≈ 16

convolution

photon:
β

p
 ≈ 0.7

electron:
β

x
 ≈ 0.5

convolution

~3 keV (4 Å) photons example

SKIF high beta SKIF low beta
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Coherent fraction at 4th generation storage ring

EBS:
ε = 110 / 5 pm·rad

β = 6.9 / 2.6 m
L = 3.2 m

SKIF HB:
ε = 69 / 7 pm·rad
β = 15.7 / 2.3 m

L = 2.3 m

SKIF LB:
ε = 69 / 7 pm·rad
β = 0.5 / 3.0 m

L = 2.3 m
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How beam will look like?
7th harmonic of SKIF SCU15.6 at 14.4 keV
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Maximizing coherent fraction of photon flux:

f coh=
εcoh

ΣxΣ ' x
⋅

εcoh
Σ yΣ ' y

=
εcoh

2

√εe , xβe , x+εcohβp√
εe , x
βe , x

+
εcoh
βp

√εe , yβe , y+εcohβp√
εe , y
βe , y

+
εcoh
βp

,

(1)min εe , x⋅εe , y=εe , x
2

⋅κ

 (minimization of electron beam emittance)

(2)βe=βp=L/ π
(matching of electron and photon phase space ellipses)
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Coherent fraction at 4th generation storage ring

SKIF HB:
ε = 69 / 7 pm·rad
β = 15.7 / 2.3 m

L = 2.3 m

SKIF LB:
ε = 69 / 7 pm·rad
β = 0.5 / 3.0 m

L = 2.3 m

SKIF LB LC:
ε = 115 / 0.6 pm·rad

β = 0.5 / 3.0 m
L = 2.3 m
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From coherent fraction to coherent flux

Fcoh=f coh⋅F=
εcoh

2

Σx Σ ' x⋅Σ y Σ ' y
⋅F

=λ
2
⋅

F

4 π
2
Σx Σ ' x⋅Σ y Σ ' y

=λ
2
⋅B

● Up to ~8 keV, low-energy 
storage rings have intrinsically 

higher coherent flux

● Between 5-20 keV SKIF SCU 
and EBS CPMU will provide the 

same coherent flux
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Electron energy spread and photon coherence

At SKIF
σ

E
 ≈ 0.14%
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Coherent imaging at future SKIF storage ring
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Coherent diffraction imaging beamlines at SKIF

«Microfocus»
(2024)

«Vector»
(~2025)

«Nanoprobe»
(~2027)

«Microfocus»:
High-energy (27 keV) direct 

coherent focusing end-station 
(CRL focusing with relaxed

~600 nm spot)

«Vector»:
Extreme flux in tender x-ray;

sub-μm direct coherent focusing 
with KB for single-particle CXDI 

«Nanoprobe»:
150-m secondary source beamline 

for nm-sized beams (MLL 
focusing)

+Bragg CXDI, XPCS, AXCCA…



  

High-energy CXDI section of “Microfocus” beamline

● Direct coherent focusing at ~70 m from the source:
spatial filtering by 0.1-mm aperture + CRL (f ≈ 0.5 m)

● Diffraction limited 600-nm spot: relaxed requirements to 
positioning during ptychographic scans

● ‘Pink beam’ option (DMM)
● HPAD + sub-μ resolution CCD camera, XRF detectors



  

Coherent imaging of complex and hierarchic nanostructures

● High-energy CXDI and ptychography up to 1-nm-resolution
● Holotomography with 150-nm-resolution

● XRD and XRF nanotomography with 200-nm-resolution

aerospace alloys

nanoelectronics

in vivo cells
(low radiation damage)

energy storage devices
(Harry et al. 2014)



  

Beam multiplexing concept

Side end-stations with 
fixed-energy techniques:
● high energy in situ XRD

● sub-μm serial MX
● 57Fe nuclear scattering

Diamonds for wavefront-preserving optics
(IGM SB RAS + IKBFU)



  

Thank you for your attention!
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