Generation and use of coherent X-ray beams at future SKIF storage ring

Sergey V. Rashchenko

Novosibirsk State University

Grigory Baranov, Mikhail Skamarokha Budker Institute of Nuclear Physics

> Yan Zubavichus, Iakov Rakshun Boreskov Institute of Catalysis

Generation and use of coherent X-ray beams at future SKIF storage ring

- Why do we need coherent X-ray beams: lensless 3D-imaging of nanostructures
- **How many** coherent photons do we need: optimization of coherent flux at 4th generation storage rings
- Coherent imaging at future SKIF storage ring

Why do we need coherent X-ray beams?

Is nm-resolution X-ray microscopy possible: Abbe diffraction limit

Resolution in microscopy is limited by wavelength AND lens numerical aperture (*n*sinθ)

VIS: *λ* ~ 500 nm, *N.A.* ~ 1 (Δ ~ 250 nm) X-RAY: *λ* ~ 0.1 nm, *N.A.* ~ 0.001 (Δ ~ 50 nm)

Fortunately, we have EM. Unfortunately:

- Cellular structures (incl. in vivo)
- 3D nanostructures in integrated circuits
- 3D nanostructures in aerospace alloys
- 3D nanostructures in energy storage devices
- Non-destructive?

Intel chip – Holler et al. 2017

Algae cell – Deng et al. 2017

5

Aerospace alloy – Barriobero-Vila et al. 2017

Do we really need *a bad* lens: lensless CXDI beyond Abbe limit

- DOES NOT require coherent illumination
 - Resolution limited by lens N.A.

- DOES require coherent illumination
- Resolution limited by detector size

Towards coherent illumination: evaluating X-ray beam coherence

Diffraction-limited Gaussian beam (TEM₀₀ mode)

$$\sigma \cdot \sigma' = \frac{\lambda}{4\pi} = \varepsilon_{coh}$$

Gaussian Schell-model beam (partially coherent)

$$\Sigma \cdot \Sigma' = \frac{1}{f_{coh}} \cdot \varepsilon_{coh}$$

PETRA IV, 12 keV: CMD into HG + LG modes

How many coherent photons do we need?

High-energy CXDI at 3rd generation storage rings

Coherent flux at ~20 keV (ESRF ID16A before upgrade): ~10¹⁰ ph/s/**1%**: ~10² s)

1 nm resolution: ~10⁶ s (11 days)

Hynix DRAM – Deng et al. 2017

9

How many coherent photons do we need? At least two orders of magnitude more!

Maximizing coherent fraction of photon flux:

$$f_{coh} = \frac{\varepsilon_{coh}}{\sum_{x} \Sigma'_{x}} \cdot \frac{\varepsilon_{coh}}{\sum_{y} \Sigma'_{y}} = \frac{\varepsilon_{coh}}{\sqrt{\varepsilon_{e,x}} \beta_{e,x}^{2} + \varepsilon_{coh}} \sqrt{\frac{\varepsilon_{e,x}}{\beta_{e,x}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \varepsilon_{coh}} \beta_{p}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}}{\beta_{e,y}}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{e,y}}{\beta_{e,y}}} + \frac{\varepsilon_{e$$

where ε_e corresponds to electron beam emittance, and β is waist size over divergence ratio:

- β_{e} given by magnetic lattice for electron beam
- $\beta_p = L / \pi$ for single electron undulator emission at resonance

Due to non-Gaussian character of undulator emission, *projected* r.m.s. values of source size and divergence are limited by $\varepsilon_{coh} \approx \lambda / 2\pi$ rather than $\lambda / 4\pi$

Coherent fraction at 4th generation storage ring

EBS: $\varepsilon = 110 / 5 \text{ pm} \cdot \text{rad}$ $\beta = 6.9 / 2.6 \text{ m}$ L = 3.2 m

SKIF HB: $\varepsilon = 69 / 7 \text{ pm} \cdot \text{rad}$ $\beta = 15.7 / 2.3 \text{ m}$ L = 2.3 m

ESRF: $\varepsilon = 4000 / 5 \text{ pm} \cdot \text{rad}$ $\beta = 37.6 / 3.0 \text{ m}$ L = 3.2 m

Maximizing coherent fraction of photon flux:

$$f_{coh} = \frac{\varepsilon_{coh}}{\sum_{x} \Sigma'_{x}} \cdot \frac{\varepsilon_{coh}}{\sum_{y} \Sigma'_{y}}$$

$$= \frac{\varepsilon_{coh}}{\sqrt{\varepsilon_{e,x}}\beta_{e,x} + \varepsilon_{coh}\beta_{p}} \sqrt{\frac{\varepsilon_{e,x}}{\beta_{e,x}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\varepsilon_{e,y}\beta_{e,y} + \varepsilon_{coh}\beta_{p}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}},$$

(1) min
$$\varepsilon_{e,x} \cdot \varepsilon_{e,y} = \varepsilon_{e,x}^2 \cdot \kappa$$

(minimization of electron beam emittance)
 $(2)\beta_e = \beta_p = L/\pi$
(matching of electron and photon phase space ellipses)

~3 keV (4 Å) photons example

Coherent fraction at 4th generation storage ring

EBS:

 $\varepsilon = 110 / 5 \text{ pm} \cdot \text{rad}$ $\beta = 6.9 / 2.6 \text{ m}$ L = 3.2 m

SKIF HB: $\varepsilon = 69 / 7 \text{ pm} \cdot \text{rad}$ $\beta = 15.7 / 2.3 \text{ m}$ L = 2.3 m

SKIF LB: $\varepsilon = 69 / 7 \text{ pm} \cdot \text{rad}$ $\beta = 0.5 / 3.0 \text{ m}$ L = 2.3 m

How beam will look like? 7th harmonic of SKIF SCU15.6 at 14.4 keV

Maximizing coherent fraction of photon flux:

$$f_{coh} = \frac{\varepsilon_{coh}}{\sum_{x} \Sigma'_{x}} \cdot \frac{\varepsilon_{coh}}{\sum_{y} \Sigma'_{y}}$$
$$= \frac{\varepsilon_{coh}}{\sqrt{\varepsilon_{e,x}}\beta_{e,x} + \varepsilon_{coh}\beta_{p}} \sqrt{\frac{\varepsilon_{e,x}}{\beta_{e,x}} + \frac{\varepsilon_{coh}}{\beta_{p}}} \sqrt{\varepsilon_{e,y}\beta_{e,y} + \varepsilon_{coh}\beta_{p}} \sqrt{\frac{\varepsilon_{e,y}}{\beta_{e,y}} + \frac{\varepsilon_{coh}}{\beta_{p}}},$$

(1) min
$$\varepsilon_{e,x} \cdot \varepsilon_{e,y} = \varepsilon_{e,x}^2 \cdot \kappa$$

(minimization of electron beam emittance)
(2) $\beta_e = \beta_p = L/\pi$
(matching of electron and photon phase space ellipses)

Coherent fraction at 4th generation storage ring

SKIF HB: $\varepsilon = 69 / 7 \text{ pm} \cdot \text{rad}$ $\beta = 15.7 / 2.3 \text{ m}$ L = 2.3 m

SKIF LB: $\varepsilon = 69 / 7 \text{ pm} \cdot \text{rad}$ $\beta = 0.5 / 3.0 \text{ m}$ L = 2.3 m

SKIF LB LC: $\varepsilon = 115 / 0.6 \text{ pm} \cdot \text{rad}$ $\beta = 0.5 / 3.0 \text{ m}$ L = 2.3 m

18

From coherent fraction to *coherent flux*

$$F_{coh} = f_{coh} \cdot F = \frac{\varepsilon_{coh}^2}{\sum_x \Sigma'_x \cdot \sum_y \Sigma'_y} \cdot F$$
$$= \lambda^2 \cdot \frac{F}{4 \pi^2 \sum_x \Sigma'_x \cdot \sum_y \Sigma'_y} = \lambda^2 \cdot B$$

- Up to ~8 keV, low-energy storage rings have *intrinsically* higher coherent flux
- Between 5-20 keV SKIF SCU and EBS CPMU will provide the same coherent flux

Electron energy spread and photon coherence

Coherent imaging at future SKIF storage ring

Coherent diffraction imaging beamlines at SKIF

«Microfocus»: High-energy (27 keV) direct coherent focusing end-station (CRL focusing with relaxed ~600 nm spot)

«Vector»: Extreme flux in tender x-ray; sub-µm direct coherent focusing with KB for single-particle CXDI

«Nanoprobe»: 150-m secondary source beamline for **nm-sized beams** (MLL focusing)

+Bragg CXDI, XPCS, AXCCA...

High-energy CXDI section of "Microfocus" beamline

- Direct coherent focusing at ~70 m from the source: spatial filtering by 0.1-mm aperture + CRL ($f \approx 0.5$ m)
- Diffraction limited 600-nm spot: relaxed requirements to positioning during ptychographic scans
 - 'Pink beam' option (DMM)
- HPAD + sub-µ resolution CCD camera, XRF detectors

Coherent imaging of complex and hierarchic nanostructures

- High-energy CXDI and ptychography up to 1-nm-resolution
 - Holotomography with 150-nm-resolution
 - XRD and XRF nanotomography with 200-nm-resolution

Beam multiplexing concept

Thank you for your attention!