

"Electronic Structure" beamline 1-6 at SKIF synchrotron facility.

A.V. Bukhtiyarov, A.D. Nikolenko, I.P. Prosvirin,

R.I. Kvon, O.E. Tereshchenko

Boreskov Institute of Catalysis <u>avb@catalysis.ru</u>

Boreskov Institute of Catalysis

http://catalysis.ru

Undulator

The beamline is based on the use of an electromagnetic undulator with ability to change the period. It should allow to generate the synchrotron radiation in VUV and Soft X-Ray range (10-2000 eV).

The main parameters	Undulator	Wiggler
Period, mm	100	200
The number of periods	26	13
The total amount of poles	56	56
Total length, mm	2900	2900
Max magnetic field, Tesla	0.5	0.5
Min magnetic field, Tesla	0.05	0.05
Max current, A	270	250
Max power consumption, kW	20	17
Max phase error	2°	2°
First harmonic (Lowest photon energy), eV	67.6	9
Emitted power in aperture 6x10 mm (27 m)	227 Вт	54 Вт

More details @ poster section from Mr Anatoly Utkin Poster Session: SR and FEL sources and centers #112

Undulator

Optics layout of beamline: Background

Beamline outline of the HIPPIE beamline @ MAX IV

Usually, to implement methods where it is necessary to use the Soft X-ray range (15–2000 eV) the optical scheme is based on a monochromator with a plane grating and focusing mirrors.

The use of this approach is well established and widely used on many Soft X-ray beamlines at different synchrotron facilities.

Optics layout of beamline

More details @ poster section from Dr. A. D. Nikolenko Poster Session: SR technological application and X-ray apparatus #16

Институт катализа им. Г.К. Борескова СО РАН

Spin-ARPES

Boreskov Institute of Catalysis

Nature **562**, p.396 (2018).

http://catalysis.ru

Spin- and Angle-resolved photoemission spectroscopy (SARPES) allows to study Many phenomena in quantum materials

Superconductivity

Various types of magnetic order

Quantum spin liquids

Topological Insulators

Light-like electrons

Magnetic monopoles

http://catalysis.ru

7

Институт катализа им. Г.К. Борескова СО РАН

A growing experimental technique

UV- and XUV Reflectometer

Reflectometry allow certification of spectral optical elements, focusing elements and X-ray detectors Reflectometry Station @ BESSY II (Berlin, Germany)

Boreskov Institute of Catalysis

Advantages of synchrotron based XPS

- High brilliance and photon flux of X-rays
 - Short measurement time with excellent noise to signal ratio
 - Trace analysis of elements possible
 - In-situ/operando spectroscopy possible
- Collimated energy of incident X-rays and the narrow beam energy dispersion makes it possible to distinguish chemical shifts easier
- Polarization of X-rays
- Tunable photon energy
 - non destructive depth profiling

Advantages of synchrotron based XPS

Possibility to provide the non-destructive depth profiling by variation of the excitation energy (electron kinetic energy)

Boreskov Institute of Catalysis

http://catalysis.ru

Ambient pressure XPS systems

Additional features:

• Gives the information about the state of active component and intermediates on the surface under the reaction/adsorption conditions

• Gives the information about the reagents and reaction products in gas phase (reaction route)

Joachim Schnadt et al 2020 J. Phys.: Condens. Matter https://doi.org/10.1088/1361-648X/ab9565 Boreskov Institute of Catalysis http://catalysis.ru

12

111111

NSLS

Ambient pressure XPS systems

Joachim Schnadt et al 2020 J. Phys.: Condens. Matter https://doi.org/10.1088/1361-648X/ab9565 **Boreskov Institute of Catalysis** http://catalysis.ru

Ambient pressure XPS systems

Joachim Schnadt et al 2020 J. Phys.: Condens. Matter https://doi.org/10.1088/1361-648X/ab9565 Boreskov Institute of Catalysis http://catalysis.ru

Model Pd-Au/HOPG catalysts: from "core-shell" structure to alloy Russian-German Lab @ BESSY II (Berlin, Germany)

A.V. Bukhtiyarov, I.P. Prosvirin, V.I. Bukhtiyarov // Appl. Surf. Sci. 367 (2016) 214.

Preparation procedure

- 1. Soft Ar⁺ sputtering
- 2. Metal 1 (Pd or Ag) deposition
- 3. Annealing in UHV @ 300°C
 - . Metal 2 (Ag or Pd) deposition
- 5. Alloy formation (Annealing in UHV up to T ?)

The optimal temperature for PdAu alloy formation ~ 400°C

14

Boreskov Institute of Catalysis

http://catalysis.ru

CO oxidation over PdAu alloy particles. NAP XPS operando study

Does alloy exist under reaction conditions?

Boreskov Institute of Catalysis

Restructuring of PdAu alloy particles in CO oxidation

A.V. Bukhtiyarov, I.P. Prosvirin, A.A. Saraev, A.Yu. Klyushin, A. Knop-Gericke, V.I. Bukhtiyarov, Faraday Discuss., 2018, 208, 255-268. Boreskov Institute of Catalysis http://catalysis.ru

CO Adsorption on Pd vs. Au Sites of Pd-Au Nanoparticles: DFT

 $E_{\rm TOP} = E_0 + \varepsilon_{\rm bond}^{\rm Au-Pd} N_{\rm bond}^{\rm Au-Pd} + \varepsilon_{\rm corner}^{\rm Au} N_{\rm corner}^{\rm Au} + \varepsilon_{\rm edge}^{\rm Au} N_{\rm edge}^{\rm Au}$

Figure 6. Structures of NP201 (Pd56Au145): Pdin-core (top row) and Pdterr (bottom row) homotops with CO adsorbate on (111) terraces (0, 8, 16, and 24 CO molecules from left to right, respectively). The corresponding segregation energy, ΔE_{segr} is given in eV.

with all Pd atoms (blue spheres) inside the particles or with all Pd atoms in surface positions on (111) terraces

Time

~10 adsorbed CO enough to surface segregate all Pd atoms of Pd₅₆Au₁₄₅

M. Mamatkulov, I.V. Yudanov, A.V. Bukhtiyarov, I.P. Prosvirin, V.I. Bukhtiyarov, and K.M. Neyman // J. Phys. Chem. C 2018, DOI: 10.1021/acs.jpcc.8b07402

Boreskov Institute of Catalysis

http://catalysis.ru

Restructuring of PdAu alloy particles in CO oxidation

in situ techniques are necessary in order to investigate the active sites of bimetallic Pd-Au alloyed catalysts

Boreskov Institute of Catalysis

http://catalysis.ru

Thank you for your kind attention

Boreskov Institute of Catalysis

http://catalysis.ru