

The design of «Structural Diagnostics» beamline for SRF «SKIF»

Boris A. Zakharov, Zakhar S. Vinokurov, Sergey V. Rashchenko, Alexander N. Shmakov, Elena V. Boldyreva E.V., Sergey A. Gromilov, Yurii V. Larichev, Alexander S. Sukhikh, Sergey V. Tsybulia, Andrey E. Trebushinin, Yan V. Zubavichus, Yakov V. Rakshun

b.zakharov@catalysis.ru

Novosibirsk, 2020

SRF "SKIF" – Shared Research Facility, Siberian Circular Photon Source

Project is initiated by a special Order of Vladimir Putin, President of RF. The first stage of the project is to be finalized in 2024. Location – Novosibirsk District, Koltsovo.

Parameter	Value
Energy	3 GeV
Current	Up to 400 mA (2 mA in a bunch)
Emittance	90 pm·rad
Injection type	Full injection
Circumference	476 m
Number of experimental stations	6 (first phase) +24 (second phase)
Number of IDs	14

Main view of SRF "SKIF", 1st phase and future beamlines

1st phase beamlines:

1-1 "MicroFocus"
1-2 "Structural Diagnostics"
1-3 "Fast Processes"
1-4 "XAFS and MCD"
1-5 "High-energy X-ray diagnostics"
1-6 "Electronic structure"

Application of X-ray diffraction techniques to solve a wide range of research and technological problems

Scientific Scope Overview

Hydrogen Energy, Fuel Cells, Catalysis, Ceramics and Films, Disordered Materials

Polymer and Carbon Materials, Dispersed Phases, Nanomaterials, Pharmaceuticals, Single crystals

Boreskov Institute of Catalysis

http://catalysis.ru

"Structural Diagnostics" Beamline

Application of X-ray diffraction techniques to a wide range of research and technological problems

Research Directions and Sections of the Beamline

(1) Section «High resolution X-ray diffraction» (Primary section) (2) Section «Single-crystal X-ray diffraction»	(1)	(2)	(3)	(4)
 (3) Section «In Situ studies at high temperatures and in gas environment» (4) Section «Small-angle X-ray scattering» 				
Unit 1 «Materials for hydrogen energy and fuel cells»				
Unit 2 «Catalysts for energy efficient catalysis, oil refining and ecology applications»				
Unit 3 «Ceramics and energetic materials»				
Unit 4 «Films and membranes»				
Unit 5 «Systems with partially disordered hierarchical structure: polymers and carbon materials»				
Unit 6 «Pharmaceuticals and biomaterials»				
Unit 7 «Single crystals»				
Unit 8 «Structural diagnostics of highly-disperse and nanostructured systems»				

Source

SC undulator, main mode: B = 1.06 T, K = 1.54 (B_{max} – 1.2 T)

Period, mm	15.6
Length, m	2
No of periods	128

Gap, mm	6
B _{max} , T	1.2
K _{max}	1.75

B error < 0.1 %, phase error < 3°

Flux on 1 x 1 mm² at 26 m from the source

Harmonics energies in main mode

Harmo nics	Energy, keV	λ, Å	Section
1	2.5	4.96	-
3	7.5	1.65	High-res
5	12.5	0.99	SAXS
7	17.5	0.71	High-res
9	22.5	0.55	SC-XRD (SM Xtal)
11	27.5	0.45	High-res
13	32.5	0.38	In Situ (XRD)

Boreskov Institute of Catalysis

Optics concept

Diamond (111) beam splitters are used to deliver 5th (12.50 keV / 0.99 Å), 9th (22.50 keV / 0.55 Å) and 13th (32.50 keV / 0.38 Å) harmonics to side sections + DCM Si(111) for straight section

Green – diffractometers, **yellow** – diamond beam splitters, DCM and CRLs (control rooms are not shown)

Features:

- Simultaneous operation of all sections in main mode (fixed energy)

- Alternative mode with ID tuning (side sections are out of operation, continuous energy variation)

Boreskov Institute of Catalysis

Diffractometer with Si(111) crystal analyzers + Si (111) DCM

In Situ studies at high temperatures and in gas environment (In Situ, side section, fixed E)

and mass-spectrometer

Dyadkin V., Pattison P., Dmitriev V., Chernyshov D. A new multipurpose diffractometer PILATUS@SNBL // J. Synchrotron Rad. 2016. Vol. 23, № 3. P. 825–829

Boreskov Institute of Catalysis

http://catalysis.ru

Single-crystal X-ray diffraction (SC-XRD, side section, fixed E)

Boreskov Institute of Catalysis

stream heater, online Raman spectrometer (pressure measurement, sample control)

Small-angle X-ray scattering (SAXS, side section, fixed E)

Diffractometer solution from XENOCS (Xeuss 3.0 diffractometer, 10 m length, Dectris Eiger2 X 4M for SAXS + Dectris Pulatus3 X 100K-M WAXS detector)

Focused (28 m, 27 lenses CRL1_XZ_R2000, 1 lense CRL1_X_R2000)					
1 st aperture diameter, mm	2 nd aperture diameter, mm	Beam size, FWHM ² , μm ²	Flux, ph/s, (% from unfocused beam)	Flux density, ph/s/mm ²	Q _{min} , Å⁻¹
0.2	0.096	70×68	8.7×10 ¹¹ (3%)	1.8×10 ¹³	1.5×10 ⁻⁴
1	0.35	232×239	1.1×10 ¹³ (42%)	2.0×10 ¹⁴	6.1×10 ⁻⁴
1.5	0.5	268×287	1.7×10 ¹³ (65%)	2.2×10 ¹⁴	9.0×10 ⁻⁴
Unfocused					
0.5	0.87	660×690	6.3×10 ¹² (24%)	1.4×10 ¹³	1.0×10 ⁻³
1	1.7	1140×1140	1.8×10 ¹³ (69%)	1.4×10 ¹³	2.0×10 ⁻³

Key accessories: GISAXS module, automatic sample changer, chambers for in situ experiments under controlled T, P and gas atmospheres

Boreskov Institute of Catalysis

Summary

-A wide range of diffraction studies can be performed at the beamline with the conceptual design presented to solve research and (or) technological tasks;

-Powder XRD, single-crystal XRD and SAXS techniques will be available including *in situ* experiments at variable T, P and gas environments;

-High intensity and low initial divergence of the beam allow one to control beam size and divergence at the sample positions by refractive X-ray optics and perform experiments either with bulk and small samples or mapping experiments.

Thank you for your kind attention!

Announcement

1) ... more information on "Structural Diagnostics" beamline optics:

Zakhar S. Vinokurov et al.

(Poster 10)

Optical design of the «Structural Diagnostics» beamline for SRF «SKIF»

2) Special Session on SKIF Project:

(16-07-2020, Start at 14-00)

General session on SKIF Project

Boreskov Institute of Catalysis

Thank you for your kind attention!

Novosibirsk District, September 2018

Boreskov Institute of Catalysis

http://catalysis.ru